Friday

stath math


Name   :
NIM    :

HOMEWORK
Problem:
Let A is a population that contains five score, there are  4   6    7    9    10
X3 be sample that contain 3 observation from population A
·      List all samples that can be formed
·      Find the mean from each sample
·      Find the mean of sample mean #
·      Compare the result at # and
·      Make the conclusion from this result
·      Why does the condition be happened
·      Find the variance and expectation from each sample
Answer:
·      All samples that can be formed are:
1.    4          6          7                                  6. 4      9          10
2.    4          6          9                                  7. 6      7          9
3.    4          6          10                                8. 6      7          10
4.    4          7          9                                  9. 6      9          10
5.    4          7          10                                10. 7    9          10

·      The mean from each sample
1.       =  =  = 5.67                    6.  =  =  = 7.67
2.       =  =  = 6.33                    7.  =  =  = 7.33
3.       =  =  = 6.67                  8.  =  =  = 7.67
4.       =  =  = 6.67                    9.  =  =  = 8.33
5.       =  =  = 7                       10.  =  =  = 8.67
·      The mean of sample mean
 =  =  = 7.2
·      Comparison of # and
From the problem above
we have, =  =  = 7.2
So, the comparison is  =
·     Conclusion
Mean of population is equal to mean of sample mean

·      The condition # equals , since the expectation value of the sample mean is the population mean
Description: [eq4]
·      The variance of each sample
1.      4  6  7  à
S2  =   =
     = (2.7889 + 2.7889 + 1.7689)/2 = 7.3467/2 = 3.67335
2.      4  6  9  à
S2  =   =
     = (5.4289 + 0.1089 + 7.1289)/2 = 12.6667/2 = 6.33335
3.      4  6  10  à
S2  =   =
     = (7.1289 + 0.4489 + 11.0889)/2 = 18.6667/2 = 9.33335
4.      4  6  9  à
S2  =   =
     = (7.1289 + 0.4489 + 5.4289)/2 = 13.0067/2 = 6.50335
5.      4  7  10  à
S2  =   =
     = (9 + 0 + 9)/2 = 18/2 = 9
6.      4  9  10  à
S2  =   =
     = (13.4689 + 1.7689 + 5.4289)/2 = 20.6667/2 = 10.3335
7.      6  7  9  à
S2  =   =
     = (1.7689 + 0.1089 + 2.7889)/2 = 4.6667/2 = 2.33335
8.      6  7  10  à
S2  =   =
     = (2.7889 + 0.4489 + 5.4289)/2 = 8.6667/2 = 4.33335
9.      6  9  10  à
S2  =   =
     = (5.4289 + 0.4489 + 2.7889)/2 = 8.6667/2 = 4.33335
10.  7  9  10  à
S2  =   =
     = (2.7889 + 0.1089 + 1.7689)/2 = 4.6667/2 = 2.33335

·      The expectation of each sample is same with the variance of each sample, since the sample variance S2 is an unbiased estimator of the population variance.

0 komentar:

Post a Comment

Powered by Blogger.
© Secret Letter | Powered by Blogger | Happy Day Template designed by BlogSpot Design - Ngetik Dot Com