Friday

COMPLEX


LESSON PLAN
DEPARTMENT OF MATHEMATICS
FACULTY OF MATH AND SCIENCES STATE UNIVERSTIY OF MALANG
ODD SEMESTER 2012/2013


A.  COURSE DESCRIPTION
1.    Name                                          : Complex Function
2.    Code                                          : MAU 414
3.    Credit/hour semester                 : 3 / 3
4.    Level                                          : S-1
5.    Group                                                      :  Compulsary
6.    Pre-quested course                     :  Real analysis I
7.    Lecturer                                     :  Sukoriyanto

B.  STANDARD COMPETENCY
Understanding analysis concepts with complex variable and being able to solve applied problems which use complex variable
C.  BASIC COMPTENCES
  1. Understanding and mastery complex number
  2. Explaining exponential form to complex number
  3. Determining roots of complex number
  4. Determining regions in complex plane
  5. Determining the value of function of complex number
  6. Determining the transformation of a complex function
  7. Understanding and mastering limit of function of complex variables
  8. Understanding and mastering functions continuity of complex variables
  9. Understanding and mastering the derivative of function of complex variable
  10. Proving theorem that related to Cauchy-Riemann equations
  11. Proving theorem that related to polar coordinates


12.  DETAIL ACTIVITIES

Session
Basic Competencies
Material
Activities
Task
1
1
Topic
·     Introduce, course material, agreement for courses, assessment, etc.
·     Sum and products of  complex number
·     Basic algebraic properties of complex number
References: [1] and [2]
·         expository
·         answer and question
·         grup discussion
·         individual work
·    read handout
·    do exercise

2
1
Topic
·         Properties of complex number
·      Moduli in complex number
·      Do exercise
References: [1] and [2]
·         expository
·         answer and question
·         grup discussion
·         individual work
·    read handout
·    do exercise

3
1
Topic
·      Complex conjugate
·      Exponintial form
·      Do exercise
References: [1] and [2]
·         expository
·         answer and question
·         grup discussion
·         individual work
·    read handout
·    do exercise

4
2
Topic
·      Products and quotients in exponential form
·      Products and quotients in exponential form
·      Do exercise
References: [1] and [2]
·         expository
·         answer and question
·         grup discussion
·         individual work
·    read handout
·    do exercise

5
3 and 4
Topic
·      Roots in complex numbers
·      Reagions in the complex plane
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

6

test 1
Individual work
study  BC 1 - 4
7
5
Topic
·      Function of complex variable
·      Transformation
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

8
6
Topic
·      Transformation by the exponential function
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

9
7
Topic
·      Limit
·      Theorem on limit
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

10
7
Topic
·      Limits involving the point at infinitly
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

11

test 2
Individual work
study  BC 5 - 7
12
8 and 9
Topic
·      Continuity
·      Derivatives
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

13
9
Topic
·      Diferentiation formulas
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

14
10
Topic
·      Cauchy-Riemann equations
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

15
10 and 11
Topic
·      Sufficient conditions for differentiability
·      Polar coordinates
·      Do exercise
References: [1] and [2]
·          expository
·          answer and question
·          grup discussion
·          individual work
·    read handout
·    do exercise

16

Test  3
Individual work
study BC 8 - 11


F. Evaluation
Assesment is done comprehensively, not only test. It must pay ettention:
  • Test tree times (k1, k2, dan k3 )
  • Activity (a)
F. Referencess
Main References:
[1]. Churchill R.V dan J.W.Brown, 1984.  “Complex Variables and Applications” USA: McGraw-Hill Book Company

Additional References: 
 [2]  Conway, J.D. 1973 “ Functions of One Complex Variable”New York : Springer- Verlag, Inc.
[3]  Muray  R  Spiegel  1990 “ Peubah Kompleks” Jakarta : Erlangga

[4]  Hauser A.A Jr., 1971. “Complex Variables with Physical Applications” New York: Simon and Schuster
[5]  Saff, E.B and A.D. Snieder, 1987 “ Fundamentals of Complex Analysis”New Jersey: Prentice-Hall, Inc  

0 komentar:

Post a Comment

Powered by Blogger.
© Secret Letter | Powered by Blogger | Happy Day Template designed by BlogSpot Design - Ngetik Dot Com